Optimal and maximal singular curves

نویسندگان

  • Yves Aubry
  • Annamaria Iezzi
  • ANNAMARIA IEZZI
چکیده

Using an Euclidean approach, we prove a new upper bound for the number of closed points of degree 2 on a smooth absolutely irreducible projective algebraic curve defined over the finite field Fq. This bound enables us to provide explicit conditions on q, g and π for the nonexistence of absolutely irreducible projective algebraic curves defined over Fq of geometric genus g, arithmetic genus π and with Nq(g)+π−g rational points. Moreover, for q a square, we study the set of pairs (g, π) for which there exists a maximal absolutely irreducible projective algebraic curve defined over Fq of geometric genus g and arithmetic genus π, i.e. with q + 1 + 2g √ q + π − g rational points.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

One-point Goppa Codes on Some Genus 3 Curves with Applications in Quantum Error-Correcting Codes

We investigate one-point algebraic geometric codes CL(D, G) associated to maximal curves recently characterized by Tafazolian and Torres given by the affine equation yl = f(x), where f(x) is a separable polynomial of degree r relatively prime to l. We mainly focus on the curve y4 = x3 +x and Picard curves given by the equations y3 = x4-x and y3 = x4 -1. As a result, we obtain exact value of min...

متن کامل

The Deligne-lusztig Curve Associated to the Suzuki Group

We give a characterization of the Deligne-Lusztig curve associated to the Suzuki group Sz(q) based on the genus and the number of Fq-rational points of the curve. §0. Throughout this paper by a curve we mean a projective, geometrically irreducible, and non-singular algebraic curve defined over the finite field Fq with q elements. Let Nq(g) denote the maximum number of Fq-rational points that a ...

متن کامل

A note on superspecial and maximal curves

In this note we review a simple criterion, due to Ekedahl, for superspecial curves defined over finite fields.Using this we generalize and give some simple proofs for some well-known superspecial curves.

متن کامل

A Sharp Maximal Function Estimate for Vector-Valued Multilinear Singular Integral Operator

We establish a sharp maximal function estimate for some vector-valued multilinear singular integral operators. As an application, we obtain the $(L^p, L^q)$-norm inequality for vector-valued multilinear operators.

متن کامل

On the Genus of a Maximal Curve

Previous results on genera g of Fq2 -maximal curves are improved: (1) Either g ≤ ⌊(q − q + 4)/6⌋ , or g = ⌊(q − 1)/4⌋ , or g = q(q − 1)/2 . (2) The hypothesis on the existence of a particular Weierstrass point in [2] is proved. (3) For q ≡ 1 (mod 3), q ≥ 13, no Fq2 -maximal curve of genus (q−1)(q−2)/3 exists. (4) For q ≡ 2 (mod 3), q ≥ 11, the non-singular Fq2 -model of the plane curve of equat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017